Utilizing Sequential Action Control Method in GaN-Based High-Speed Drive for BLDC Motor
نویسندگان
چکیده
This paper presents a hybrid model–based control algorithm that combines Model Predictive Control (MPC) and Sequential Action Control (SAC) deployed in a high-speed drive for Brushless DC (BLDC) motor by using a DC-DC converter with Gallium Nitride (GaN) switches. GaN FETs are selected because of their higher speed and lower power loss as compared with traditional Si switches. In the proposed framework, SAC processes the initial values of the control variables as well as their time of application and their duration in MPC loop. After receiving the underlying estimation of future contribution from SAC, MPC consolidates it with current input and predicts future control values by using the system state space model. This hybrid control conserves control effort and reduces sensitivity to initial conditions. In this way, converter’s output voltage is controlled to produce the reference speed at the motor output. National Instrument PXIe-6356 module is utilized as the interface between software and hardware that is a multi-function, LabVIEW-compatible data acquisition device. The viability of the proposed hybrid optimization for the high-speed drive is confirmed numerically by utilizing MATLAB/Simulink and approved experimentally using a Gallium Nitride (GaN) half-bridge DC-DC converter.
منابع مشابه
Torque Ripple Reduction of Electrolytic Capacitor-less BLDC Motor Drive
Brushless DC motors called BLDC are used in many industrial and non-industrial applications today for reasons such as very high efficiency, easy control method and high reliability, and their use is increasingly used in mass production applications, especially home appliances. But these motors require the use of an electric drive, even in constant speed applications. Commercialization of these ...
متن کاملOptimal Sensorless Four Switch Direct Power Control of BLDC Motor
Brushless DC (BLDC) motors are used in a wide range of applications due to their high efficiency and high power density. In this paper, sensorless four-switch direct power control (DPC) method with the sector to sector commutations ripple minimization for BLDC motor control is proposed. The main features of the proposed DPC method are: (1) fast dynamic response (2) easy implementation (3) use o...
متن کاملمروری بر روش های تحلیل، کنترل، پیاده سازی و ارزیابی درایوهای موتورهای DC بدون جاروبک
Nowadays, due to significant increase in demands of electric motors for residential, commercial and industrial applications, and for optimum consumption of electrical energy, the design and manufacturing of high efficiency motors and related variable speed drives have been considered by many suppliers. Among several kinds of motors, the brushless DC (BLDC) motor is employed in many applications...
متن کاملImplementation of a Novel Brushless DC Motor Drive based on One-Cycle Control Strategy
In this paper, one-cycle control (OCC), as a constant-frequency PWM control strategy for current control of a six-switch brushless dc (BLDC) motor drive is investigated. Developed current regulator is a unified controller and PWM modulator. Employing the one-cycle control strategy, decreases the torque ripple resulted from the conventional hysteresis current controllers and therefore, the vibra...
متن کاملThe Influence of DC-Link Voltage on Commutation Torque Ripple of Brushless DC Motors with Two-Segment Pulse-width Modulation Control Method
The commutation process causes current ripple to be generated in the drive system of brushless DC (BLDC) motor. This, in turn, leads to output torque ripple. Mechanical vibration and acoustic noise are its influences which are undesirable phenomenon in some applications. A new method is presented in this paper which reduces torque ripple and commutation period in the entire range of motor speed...
متن کامل